skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Monaco, Martina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mantle plumes are thought to recycle material from the Earth's deep interior. One constraint on the nature and quantity of this recycled material comes from the observation of seismic discontinuities. The detection of the X‐discontinuity beneath Hawaii, interpreted as the coesite‐stishovite transition, requires the presence of at least 40% basalt. However, previous geodynamic models have predicted that plumes cannot carry more than 15%–20% of high‐density basaltic material. We propose this contradiction can be resolved by taking into account the length scale of chemical heterogeneities. While previous modeling studies assumed mechanical mixing on length scales smaller than the model resolution, we here model basaltic heterogeneities with length scales of 30–40 km, allowing for their segregation relative to the pyrolitic background plume material. Our models show that larger basalt fractions than previously thought possible—exceeding 40%—can temporarily accumulate within plumes at the depth of the X‐discontinuity. Two key mechanisms facilitate this process: (a) The random distribution of basaltic heterogeneities induces large temporal variations in the basalt fraction with cyclical highs and lows. (b) The high density contrast between basalt and pyrolite below the coesite‐stishovite transition causes ponding and accumulation of basalt within the rising plume at that depth. Because the statistical effect dominates, large values of 35%–40% basalt are only sustained temporarily. These results further constrain the chemical composition of the Hawaiian plume. Beyond that, they provide a geodynamic mechanism that explains the seismologic detection of the X‐discontinuity and highlights how recycled material is carried toward the surface. 
    more » « less